

B. Sc. (Sem. VI) (CBCS) (W.E.F. 2016) Examination

July - 2021

Statistics: Paper - 602

(Statistical Quality Control & Operation Research)

		Faculty Code : 003 Subject Code : 1016052	
Tin	ne : 2	2 Hours] [Total Marks	: 70
Ins	truct	ions: (1) Attempt any five question from the follow (2) Each question carries 14 marks.	ving.
1	(a)	(1) Variation in the items produced in a factory may be due to	4
		(2) Cent percent inspection is preferable when	
		(3) The Shewhart control charts are meant to find	
		(4) charts is used for controlling number of defects in a TV set.	
	(b)	Define charts for attributes.	2
	(c)	Write the difference between variable charts and attribute charts.	3
	(d)	Discuss different assignable cause of variations.	5
2	(a)	(1) For \overline{X} -chart UCL=325 and LCL =275, then CL =	4

- - (2) If $\overline{c} = 2.25$, the lower control limit of C-chart
 - The control charts help to achieve _____ control. (3)
 - (4) Main tools of statistical quality control are _____.

	(b)	Write Short Note: Theory of R	uns. 2	2			
	(c)	Write Difference between p chart and np chart.					
	(d)	Explain U -chart and Determine its limits.					
3	(a)	(1) The small fraction of defect	ives p_2 , on the basis	4			
		of which a lot is not reject	ed except for a small				
		number of times is called _					
		(2) OC curve reveals the ability to distinguish between					
		(3) Acceptance sampling plans a	are preferable due to				
		(4) The maximum limit of percentinally accepted product is	O				
	(b)	If in single sampling plan (1000	, 100, 2) and also	2			
		AQL = 0.01 and $LTPD = 0.06$ then obtain producer's					
		and consumer's risk. $[e^{-1} = 0.368]$	$e^{-6} = 0.002479$].				
	(c)	Find the value of AOQ and AT	for single sampling 5	3			
		plan (8000, 400, 1) when $p' = 0$	0.5%.				
		$[e^{-2} = 0.1353, e^{-4} = 0.0183]$					
	(d)	Derive OC function for single sa	ampling plan.	5			
4	(a)	(1) The probability of rejecting	a lot having \overline{p} as	4			
		the process average defective	es is known as				
		(2) Elain agrammants migh					
		(2) Explain consumer's risk.					
		(3) Explain AQL.	1				
	<i>(</i> 1.)	(4) Explain Average Sample No					
	(b)	Explain Average Total Inspection		2			
	(c)	Find the probability of accepting		3			
		defective of lot is 0.02 using sin					
	, -:	(100, 20, 1) by using Hyper Geo		_			
DP.	(d)	Derive OC function for double s					
BBG	-003-	1016052] 2	[Contd	•			

- 5 (a) (1) The role of artificial variables in the simplex method is _____.
 - (2) The solution space of an LP problem unbounded due to _____.
 - (3) For maximum LP model the simplex method is terminated when all value _____.
 - (4) If two constraints do not intersect in the positive quadrant of the graph then _____.
 - (b) Define optimum feasible solution.
 - (c) Write the applications of Linear Programming. 3
 - (d) A manufacturer produces two types of machines A
 and B. There are two sections in his factory. In Section-I the assembling of parts is done and in Section-II the finishing of the product is done. The following are certain information available:

	No. of workers required					
Section	A	В				
I	5	2				
II	3	3				

In Section-I not more than 180 workers can be employed and in Section II not more than 135 workers can be employed. The numbers of B type machines are to be manufactured, double or less than that of A type of machines. If each A type machine gives profit of Rs. 100 and B types machines gives profit of Rs. 150. Find how many machines of each type the manufacturer should produce so as to obtain maximum profit.

4

2

5

6	(a)	(1) To convert \geq inequality constraints into 4
		equality constraints, we must
		(2) A feasible solution to LP problem
		(3) The graphical method of LP problem uses
		(4) In the optimal simplex table, $c_j - z_j = 0$ value indicates
	(b)	Define Linear programming. 2
	(c)	Define basic solution. 3
	(d)	Write the assumptions of LP problem. 5
7	(a)	(1) If a primal LP problem has a finite solution 4
		then the dual LP problem should have
		(2) The dual of the primal minimization LP problem having m constraints and n non-negative variables should
		(3) A variable represents amounts by which solution values exceed a resource.
		(4) Model in which at least one decision variable is random is known as model.
	(b)	Write steps to solve LP Problem by Big -M method. 2
	(c)	Solve the following LP problem. 3
		$Maximize : Z = 2x_1 + x_2$
		Subject to constraints:
		$x_1 + 2x_2 \le 10$; $x_1 + x_2 \le 6$; $x_1 - x_2 \le 2$; $x_1 - 2x_2 \le 1$; $x_1, x_2 \ge 0$
	(d)	Obtain solution of the following LP problem by 5
		Simplex method Maximize : $Z = 3x_1 + 5x_2 + 4x_3$
		Subject to constraints:
		(i) $2x_1 + 3x_2 \le 8$;
		(ii) $2x_1 + 5x_3 \le 10$;
		(iii) $3x_1 + 2x_2 + 4x_3 \le 15$ and $x_1, x_2, x_3 \ge 0$.
BBG	-003	1016052] 4 [Contd

8	(a)	(1) In Big-M method, basic feasible	4
		solution is obtained by assigning zero value to the original value.	
		(2) For a maximization problem, the objective function coefficient for an artificial variable is	
		(3) Optimality is indicated for a maximization problem when all elements in the $c_j - z_j$ rows	
		(4) Optimality is indicated for a minimization problem all elements must be	
	(b)	Explain mathematical form of LP problem.	2
	(c)	Write the dual of the following problem.	3
		Minimize: $Z_x = 3x_1 - 2x_2 + 4x_3$	
		Subject to constraints:	
		$3x_1 + 5x_2 + 4x_3 \ge 7$; $6x_1 + x_2 + 3x_3 \ge 4$; $7x_1 - 2x_2 - x_3 \le 0$;	
		$x_1 - 2x_2 + 5x_3 \ge 3$; $4x_1 + 7x_2 - 2x_3 \ge 2$; $x_1, x_2, x_3 \ge 0$	
	(d)	Obtain solution of the following LP problem by	5
		Simplex method Maximize : $Z = 3x_1 + 4x_2$	
		Subject to constraints:	
		$2x_1 + 3x_2 \le 16$; $2x_1 + x_2 \le 8$; $x_1, x_2 \ge 0$	
9	(a)	(1) If there were n workers and n iobs there would be	4
		(2) An assignment problem can be solved by	
		(3) The solution to a transportation problem with m	
		rows and n $columns$ is feasible if number of positive allocation	
		(4) If there were to use opportunity cost value for an	
		unused cell to test optimality it would be	
	(b)	Explain general mathematical form of transportation	2

problem.

(c) Obtain a solution of following transportation problem **3** by North-West Corner method.

	D_1	D_2	D_3	D_4	D_5	Supply
O_1	2	11	10	3	7	4
O_2	1	4	7	2	1	8
O_3	3	9	4	8	12	9
Requirement	3	3	4	5	6	21

(d) Obtain a solution of following transportation problem **5** by Vogel's method.

	D_1	D_2	D_3	Supply
O_1	3	7	1	20
O_2	2	9	12	30
O_3	10	2	5	50
Requirement	35	15	50	100

- 10 (a) (1) The _____ serves the same purpose for the transportation method all slack variables in the simplex method.
 - (2) The _____ method provides an ,efficient method of finding the optimal solution without making a direct comparison of every solution.
 - (3) For a salesman who has to visit n cities which _____ ways of his tour plan.
 - (4) Explain transportation problem.
 - (b) Explain assignment problem with example.
 - (c) Solve the assignment problem that the objective is to maximize the total cost.

	Work			
Persons	A	В	С	
I	20	8	4	
II	16	5	6	
III	10	2	3	

2

(d) Obtain a solution of following transportation problem. 5

	D_1	D_2	D_3	D_4	Supply
O_1	21	16	25	13	11
O_2	17	18	14	23	13
O_3	32	27	18	41	19
Requirement	6	10	12	15	43